Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(10)2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37892125

RESUMO

Plants uptake and assimilate nitrogen from the soil in the form of nitrate, ammonium ions, and available amino acids from organic sources. Plant nitrate and ammonium transporters are responsible for nitrate and ammonium translocation from the soil into the roots. The unique structure of these transporters determines the specificity of each transporter, and structural analyses reveal the mechanisms by which these transporters function. Following absorption, the nitrogen metabolism pathway incorporates the nitrogen into organic compounds via glutamine synthetase and glutamate synthase that convert ammonium ions into glutamine and glutamate. Different isoforms of glutamine synthetase and glutamate synthase exist, enabling plants to fine-tune nitrogen metabolism based on environmental cues. Under stressful conditions, nitric oxide has been found to enhance plant survival under drought stress. Furthermore, the interaction between salinity stress and nitrogen availability in plants has been studied, with nitric oxide identified as a potential mediator of responses to salt stress. Conversely, excessive use of nitrate fertilizers can lead to health and environmental issues. Therefore, alternative strategies, such as establishing nitrogen fixation in plants through diazotrophic microbiota, have been explored to reduce reliance on synthetic fertilizers. Ultimately, genomics can identify new genes related to nitrogen fixation, which could be harnessed to improve plant productivity.


Assuntos
Compostos de Amônio , Nitratos , Nitratos/metabolismo , Nitrogênio/metabolismo , Glutamato-Amônia Ligase/metabolismo , Óxido Nítrico/metabolismo , Glutamato Sintase/metabolismo , Fertilizantes , Plantas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Solo
2.
Hematol Rep ; 15(3): 483-490, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37606495

RESUMO

Hemoglobin (Hb) Agrinio is a rare non-deletional a-globin mutation observed almost exclusively in Greek, Spanish or other Mediterranean families. The clinical manifestations of a carrier of a single Hb Agrinio mutation (single heterozygosity) depend on the concomitant presence or absence of other mutations or variants in the beta, alpha or other modifying genes. We present a Greek patient harboring a Hb Agrinio variant plus the - -Med alpha deletional allele, having an infrequent severe form of alpha thalassemia, in contrast to the typical alpha thalassemic patient and requiring regular red blood cell (RBC) transfusions and chelation treatment. We also provide a concise literature review regarding alpha thalassemic hemoglobin variants and their molecular and clinical combinations. A phase 2, double-blind, randomized, placebo-controlled, multicenter clinical trial to determine the efficacy and safety of luspatercept (BMS-986346/ACE-536) for the treatment of anemia in adults with alpha thalassemia with the participation of our center is currently recruiting patients (NCT05664737).

3.
Natl Sci Rev ; 8(1): nwaa149, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34691553

RESUMO

Salt stress is a major environmental factor limiting plant growth and productivity. We recently discovered an important new salt tolerance pathway, where the cell wall leucine-rich repeat extensins LRX3/4/5, the RAPID ALKALINIZATION FACTOR (RALF) peptides RALF22/23 and receptor-like kinase FERONIA (FER) function as a module to simultaneously regulate plant growth and salt stress tolerance. However, the intracellular signaling pathways that are regulated by the extracellular LRX3/4/5-RALF22/23-FER module to coordinate growth, cell wall integrity and salt stress responses are still unknown. Here, we report that the LRX3/4/5-RALF22/23-FER module negatively regulates the levels of jasmonic acid (JA), salicylic acid (SA) and abscisic acid (ABA). Blocking JA pathway rescues the dwarf phenotype of the lrx345 and fer-4 mutants, while disruption of ABA biosynthesis suppresses the salt-hypersensitivity of these mutants. Many salt stress-responsive genes display abnormal expression patterns in the lrx345 and fer-4 mutants, as well as in the wild type plants treated with epigallocatechin gallate (EGCG), an inhibitor of pectin methylesterases, suggesting cell wall integrity as a critical factor that determines the expression pattern of stress-responsive genes. Production of reactive oxygen species (ROS) is constitutively increased in the lrx345 and fer-4 mutants, and inhibition of ROS accumulation suppresses the salt-hypersensitivity of these mutants. Together, our work provides strong evidence that the LRX3/4/5-RALF22/23-FER module controls plant growth and salt stress responses by regulating hormonal homeostasis and ROS accumulation.

4.
New Phytol ; 224(1): 274-290, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31009077

RESUMO

The capability to maintain cell wall integrity is critical for plants to adapt to unfavourable conditions. l-Arabinose (Ara) is a constituent of several cell wall polysaccharides and many cell wall-localised glycoproteins, but so far the contribution of Ara metabolism to abiotic stress tolerance is still poorly understood. Here, we report that mutations in the MUR4 (also known as HSR8) gene, which is required for the biosynthesis of UDP-Arap in Arabidopsis, led to reduced root elongation under high concentrations of NaCl, KCl, NaNO3 , or KNO3 . The short root phenotype of the mur4/hsr8 mutants under high salinity is rescued by exogenous Ara or gum arabic, a commercial product of arabinogalactan proteins (AGPs) from Acacia senegal. Mutation of the MUR4 gene led to abnormal cell-cell adhesion under salt stress. MUR4 forms either a homodimer or heterodimers with its isoforms. Analysis of the higher order mutants of MUR4 with its three paralogues, MURL, DUR, MEE25, reveals that the paralogues of MUR4 also contribute to the biosynthesis of UDP-Ara and are critical for root elongation. Taken together, our work revealed the importance of the Ara metabolism in salt stress tolerance and also provides new insights into the enzymes involved in the UDP-Ara biosynthesis in plants.


Assuntos
Arabidopsis/fisiologia , Arabinose/biossíntese , Tolerância ao Sal/fisiologia , Estresse Fisiológico , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabinose/farmacologia , Adesão Celular/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mucoproteínas/metabolismo , Mutação/genética , Fenótipo , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Isoformas de Proteínas/metabolismo , Multimerização Proteica/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Cloreto de Sódio/farmacologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
5.
Proc Natl Acad Sci U S A ; 115(51): 13123-13128, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30514814

RESUMO

The perception and relay of cell-wall signals are critical for plants to regulate growth and stress responses, but the underlying mechanisms are poorly understood. We found that the cell-wall leucine-rich repeat extensins (LRX) 3/4/5 are critical for plant salt tolerance in Arabidopsis The LRXs physically associate with the RAPID ALKALINIZATION FACTOR (RALF) peptides RALF22/23, which in turn interact with the plasma membrane-localized receptor-like protein kinase FERONIA (FER). The lrx345 triple mutant as well as fer mutant plants display retarded growth and salt hypersensitivity, which are mimicked by overexpression of RALF22/23 Salt stress promotes S1P protease-dependent release of mature RALF22 peptides. Treatment of roots with mature RALF22/23 peptides or salt stress causes the internalization of FER. Our results suggest that the LRXs, RALFs, and FER function as a module to transduce cell-wall signals to regulate plant growth and salt stress tolerance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Desenvolvimento Vegetal , Plantas Geneticamente Modificadas/fisiologia , Proteínas/metabolismo , Tolerância ao Sal/genética , Estresse Fisiológico , Proteínas de Arabidopsis/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Leucina/química , Proteínas de Repetições Ricas em Leucina , Proteínas/genética , Plantas Tolerantes a Sal/fisiologia , Transdução de Sinais
6.
Dev Cell ; 43(5): 618-629.e5, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29056551

RESUMO

Mitogen-activated protein kinase cascades are important signaling modules that convert environmental stimuli into cellular responses. We show that MPK3, MPK4, and MPK6 are rapidly activated after cold treatment. The mpk3 and mpk6 mutants display increased expression of CBF genes and enhanced freezing tolerance, whereas constitutive activation of the MKK4/5-MPK3/6 cascade in plants causes reduced expression of CBF genes and hypersensitivity to freezing, suggesting that the MKK4/5-MPK3/6 cascade negatively regulates the cold response. MPK3 and MPK6 can phosphorylate ICE1, a basic-helix-loop-helix transcription factor that regulates the expression of CBF genes, and the phosphorylation promotes the degradation of ICE1. Interestingly, the MEKK1-MKK2-MPK4 pathway constitutively suppresses MPK3 and MPK6 activities and has a positive role in the cold response. Furthermore, the MAPKKK YDA and two calcium/calmodulin-regulated receptor-like kinases, CRLK1 and CRLK2, negatively modulate the cold activation of MPK3/6. Our results uncover important roles of MAPK cascades in the regulation of plant cold response.


Assuntos
Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Estabilidade Proteica , Fatores de Transcrição/metabolismo , Temperatura Baixa , Resposta ao Choque Frio , Sistema de Sinalização das MAP Quinases/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...